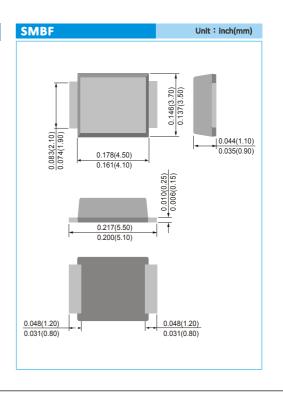


SURFACE MOUNT FAST RECOVERY RECTIFIER


VOLTAGE 50 to 600 Volts CURRENT 2.0 Ampere

FEATURES

- · For surface mounted applications
- · Low profile package
- Built-in strain relief
- · Easy pick and place
- · Fast Recovery times for high efficiency
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated junction
- · Lead free in comply with EU RoHS 2002/95/EC directives.
- · Green molding compound as per IEC61249 Std

MECHANICAL DATA

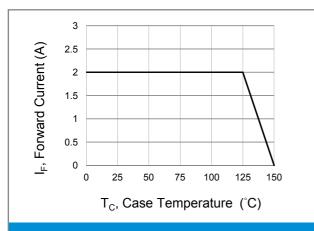
- · Case: SMBF molded plastic
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- · Approx. Weight: 0.0018 ounce, 0.05 grams
- · Polarity: Color band denotes cathode end

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

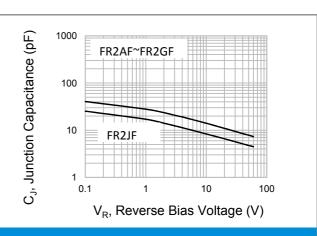
Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

SYMBOL	FR2AF	FR2BF	FR2DF	FR2GF	FR2JF	UNITS
V _{RRM}	50	100	200	400	600	V
V _{RMS}	35	70	140	280	420	V
V _{DC}	50	100	200	400	600	V
I _{F(AV)}	2.0					А
I _{FSM}	50					А
V _F	1.3					V
I _R	1.0					μА
CJ	24			14	pF	
	20 135				°C / W	
T _{rr}		1	50		250	nS
T_J, T_{STG}	-55 to +150				°C	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ \\ I_{F(AV)} \\ \\ I_{FSM} \\ V_{F} \\ \\ I_{R} \\ \\ C_{J} \\ \\ R_{\theta JA} \\ \\ T_{rr} \end{array}$	V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} V _F I _R C _J R _{0,JA} T _{rr}	V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{FSM} V _F I _R C _J R _{0JL} R _{0JA} T _{rr} 1	V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _{F(AV)} 2.0 I _{FSM} 50 V _F 1.3 I _R 1.0 C _J 24 R _{0JL} R _{0JA} R _{0JA} 135 T _{rr} 150	V _{RRM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 I _{F(AV)} 2.0 I _{FSM} 50 V _F 1.3 I _R 1.0 C _J 24 R _{0,JA} 20 R _{0,JA} 135 T _{rr} 150	V _{RRM} 50 100 200 400 600 V _{RMS} 35 70 140 280 420 V _{DC} 50 100 200 400 600 I _{F(AV)} 2.0 I _{FSM} 50 V _F 1.3 I _R 1.0 C _J 24 14 R _{0JL} R _{0JA} R _{0JA} 135 T _{rr} 150 250

NOTES: 1. Mounted on an FR4 PCB, single-sided copper, with 48cm² copper pad area.


2. Mounted on an FR4 PCB, single-sided copper, mini pad.

April 30,2012-REV.00 PAGE . 1



RATING AND CHARACTERISTIC CURVES

Fig.1 Forward Current Derating Curve

Fig.2 Typical Junction Capacitance

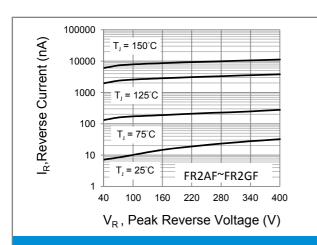


Fig.3 Typical Reverse Characteristics

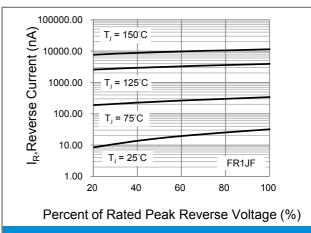
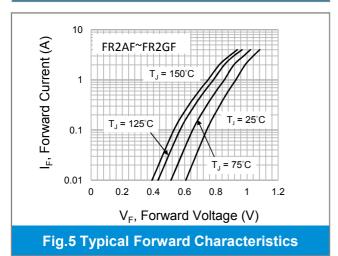
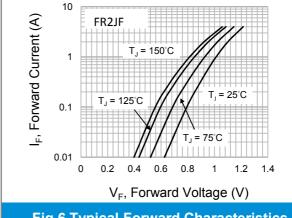
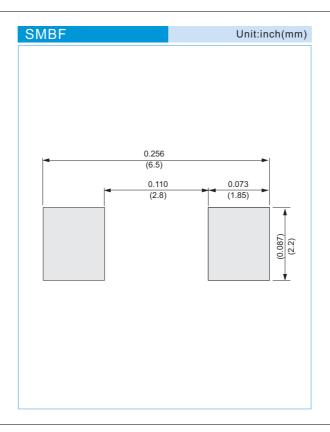




Fig.4 Typical Reverse Characteristics


Fig.6 Typical Forward Characteristics

PAGE . 2 April 30,2012-REV.00

MOUNTING PAD LAYOUT

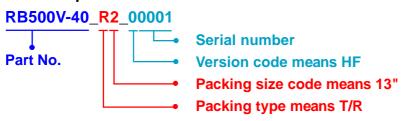
ORDER INFORMATION

· Packing information

T/R - 5K per 13" plastic Reel

LEGAL STATEMENT

Copyright PanJit International, Inc 2012


The information presented in this document is believed to be accurate and reliable. The specifications and information herein are subject to change without notice. Pan Jit makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Pan Jit products are not authorized for use in life support devices or systems. Pan Jit does not convey any license under its patent rights or rights of others.

April 30,2012-REV.00 PAGE . 3

For example:

Packing Code XX				Version Code XXXXX			
Packing type	1 st Code	Packing size code	2 nd Code	HF or RoHS	1 st Code	2 nd ~5 th Code	
T/B	Α	N/A	0	HF	0	serial number	
T/R	R	7"	1	RoHS	1	serial number	
B/P	В	13"	2				
T/P	Т	26mm	Х				
TRR	S	52mm	Υ				
TRL	L	PBCU	U				
FORMING	F	PBCD	D				

Part No_packing code_Version

FR2AF_R1_00001 FR2AF_R2_00001

April 30,2012-REV.00 PAGE . 4